Трехмерная тензорная математика представляется в виде аналитического обобщения численных решений прикладных задач гидромеханики, основанных на конечноразностных моделях метода крупных частиц (конечного объема). Ориентация изложения на прямые вычислительные эксперименты приводит к поиску элементарных объектов гидромеханики, допускающих сквозную смысловую интерпретацию динамики движения и физических свойств моделируемой жидкости. Рассмотрены особенности непротиворечивого проектирования алгоритмов, сводящиеся к ключевым элементам функционального языка программирования, способного автоматизировать применение тензорных выражений для построения вычислительных экспериментов при моделировании течений жидкости. Небольшой исторический экскурс, приведенный в первой части книги, адресован читателям, познающим развитие естественных наук во взаимосвязи со становлением прикладной математики. Логические заключения второй части книги заинтересуют разработчиков аппаратных и языковых средств специализированной вычислительной техники. Вычислительные эксперименты гидромеханики представлены в третьей части книги, в которой строгость математических законов по возможности смягчается метафизическими ассоциациями из междисциплинарных естественнонаучных дисциплин. Книга ориентирована на студентов и инженеров, ведущих поисковые исследования и реализующих прикладные вычислительные эксперименты в различных областях науки и техники, и прежде всего в механике сплошных сред.
Содержание
Предисловие
О технической задаче
Исторический экскурс
Сводка основных терминов и ключевых определений
Геометрические определения
Ключевые принципы непротиворечивого логического проектирования
Диалектика - как установление количественных зависимостей
Трилектика - как механика взаимодействия или язык непротиворечивого
логического проектирования
Краткая таблица основных обозначений
Часть 1
Технико-исторический обзор трехмерных физических обоснований непрерывной и вездесущей среды
Метафизические основы фундаментальных законов гидромеханики
Из истории механики и геометрии
Античная механика и геометрия
Галилей, Декарт, Ньютон
Аналитические модели гидромеханики Леонарда Эйлера
Дифференциальные уравнения в частных производных
Моделирование течений с помощью потенциала скорости
Модели плоских течений
О постановке и разрешимости задач механики сплошных сред
Мир компьютерных моделей механики сплошных сред
Тензорная формализация объектов и операций вычислительной гидромеханики
Одномерные скаляры
Векторы
Особенности координатных преобразований в дуальных базисах
Часть 2
Логика создания вычислительных моделей и компьютерных алгоритмов
Построение программной среды для проведения вычислительного эксперимента
Определение цели, содержания и методологии проектирования вычислительного эксперимента
Проектные решения для новых алгоритмов вычислительной гидромеханики
Особенности языковой среды программирования
О логическом проектировании программных комплексов
Особенности использования логической матрицы проекта
Среда программирования на основе языка C++
Вычислительные операции с элементарными жидкими частицами, их физическая интерпретация
Построение числовых массивов для моделирования пространственных гидродинамических полей
Часть 3
Тензорное представление алгоритмов вычислительной гидромеханики
Вводные определения
Форма представления элементарных объектов вычислительной гидромеханики
Определение координатных систем
Пространственно-временные привязки вычислительных объектов
Основные действия и операции с пространственными объектами
Формальное приведение уравнений движения к Эйлеровым
Связь между уравнениями кинематики и законами гидромеханики
Построение вычислительной модели в тензорной форме
Построение базовых операций вычислительной гидромеханики
Свойства элементарных вычислительных объектов
Свойства вычислительных операций
Построение вычислительного эксперимента
Вычислительная среда
Часть 4
Опыт построения программных алгоритмов
Логическая структура обобщенного программного комплекса
Примеры реализации численных схем
Построение длинноволнового эксперимента на векторных формализациях
Особенности реализации вычислительного эксперимента на примере задачи о накате волны на пологий берег
Кинематическая модель расчета волновых фронтов и лучей
Заключение
Алфавитный указатель
Указатель имен
Литература
Историческое наследие
Классическая гидромеханика
Вычислительная гидромеханика
Тензорный анализ
Теоретическая и корабельная гидромеханика
Компьютерные алгоритмы и функциональное программирование